A DFT Study of the Geometrical, Spectroscopical and Reactivity Properties of Diindolylmethane-Phenylboronic Acid Hybrids.
نویسندگان
چکیده
The structure of the ortho-, meta- and para- hybrid diindolylmethane-phenylboronic acids and their interactions were optimized with by a quantum chemical method, using density functional theory at the (DFT) level. Thus, infrared bands were assigned based on the scaled theoretical wavenumbers by correlating the respective experimental data of the molecules. In addition, the corresponding ¹H-/13C-/11B-NMR experimental and theoretical chemical shifts were correlated. The target molecules showed a poor treatment of the OH shifts in the GIAO method due to the absence of explicit solvent effects in these calculations; therefore, they were explicitly considered with acetone molecules. Moreover, the electron density at the hydrogen bond critical point increased, generating stabilization energy, from weak to moderate or weak to strong, serving as an indicator of the strength of the hydrogen bond between the different intermolecular interactions. Finally, some properties related to the reactive behavior of the target molecules associated with their cytotoxic effects and metabolic pathways were also calculated.
منابع مشابه
A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes
In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...
متن کاملThe Prediction of Thermo Physical, Vibrational Spectroscopy, Chemical Reactivity, Biological Properties of Morpholinium Borate, Phosphate, Chloride and Bromide Ionic Liquid: A DFT Study
In the light of computational chemistry, based on morpholinium cation-based Ionic Liquid, their different types of physical, chemical, and biological properties is highlighted. The physical properties are evaluated through the Density Functional Theory (DFT) of Molecular Mechanics and also examine the chemical and biological properties. The difference between Highest Occupied Molecular Orbital ...
متن کاملThe effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid
The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo p...
متن کاملThe effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid
The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo p...
متن کاملTheoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method
The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2017